Submit Your Article CMED MEACR meeting
Home Print this page Email this page Users Online: 125
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2017  |  Volume : 6  |  Issue : 5  |  Page : 207-213

Mechanisms and biomarkers to detect chemotherapy-induced cardiotoxicity

1 Department of Cardiology, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Department of Biochemistry, Hyperlipidemia Research Center, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Department of Genetic, Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4 Department of Biology, Laboratory of Stem Cells, DSST, Faculty of Sciences, Lebanese University, Beirut, Iran

Correspondence Address:
Zeinab Deris Zayeri
Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ccij.ccij_47_17

Rights and Permissions

A cardiotoxicity is a considerable event for cardiologists and oncologists during and after chemotherapy. The use of certain chemotherapy agents such as trastuzumab, programmed death-1 inhibitors, and Doxorubicin increased in cancer therapy; however, these agents associate with an increase in mortality and cardiotoxicity. Detecting cardiotoxicity is based on patient's medical history and physical examination since there is no exact biomarker or polymorphism for its early diagnosis. Therefore, we still need potential biomarkers for cardiotoxicity risk. Treatment of several cancers is manageable while preventing cardiotoxicity, as chemotherapy side effect, is essential since it might be a greater risk than the malignancy if not detected at early stages. Early detection of cardiotoxicity, during and after chemotherapy, is crucial to decrease permanent and devastating cardiac damages. Recently, troponin but also atrial-type and brain-type natriuretic peptides were reported as good diagnostic biomarkers for cardiotoxicity. Micro-RNAs and inflammatory mediators are candidates as prognostic biomarkers. Genetic biomarkers such as C282Y allele of hemochromatosis gene makes the patients more susceptible to cardiotoxicity; therefore, genome studies are valuable in predicting chemotherapy results. In this review, we present the mechanisms of developing chemotherapy-induced cardiotoxicity and biomarkers for its detection in patients. Echocardiographic techniques are very strong techniques which could be used along with biomarkers for more reliable and quicker diagnosis.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded31    
    Comments [Add]    
    Cited by others 7    

Recommend this journal